Measurement and simulation of water and methanol transport in algal cells.

نویسندگان

  • John R Walsh
  • Kenneth R Diller
  • Jerry J Brand
چکیده

BACKGROUND Experimental data and a complementary biophysical model are presented to describe the dynamic response of a unicellular microalga to osmotic processes encountered during cryopreservation. METHOD OF APPROACH Chlorococcum texanum (C. texanum) were mounted on a cryoperfusion microscope stage and exposed sequentially to various solutions of sucrose and methanol. Transient volumetric excursions were determined by capturing images of cells in real time and utilizing image analysis software to calculate cell volumes. A biophysical model was applied to the data via inverse analysis in order to determine the plasma membrane permeability to water and to methanol. The data were also used to determine the elastic modulus of the cell wall and its effect on cell volume. A three-parameter (hydraulic conductivity (Lp), solute permeability; (omega), and reflection coefficient, (sigma)) membrane transport model was fit to data obtained during methanol perfusion to obtain constitutive property values. These results were compared with the property values obtained for a two coefficient (Lp and omega) model. RESULTS The three-parameter model gave a value for sigma not consistent with practical physical interpretation. Thus, the two-coefficient model is the preferred approach for describing simultaneous water and methanol transport. The rate of both water and methanol transport were strongly dependent on temperature over the measured temperature range (25 degrees C to -5 degrees C) and cells were appreciably more permeable to methanol than to water at all measured temperatures. CONCLUSION These results may explain in part why methanol is an effective cryoprotective agent for microalgae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transport of a Liquid Water-Methanol Mixture in a Single Wall Carbon Nanotube

In this work, a molecular dynamics simulation of the transport of water - methanol mixture through the single wall carbon nanotube (SWCNT) is reported. Methanol and water are selected as fluid molecules since water represents a strongly polar molecule while methanol is as an intermediate between polar and strongly polar molecules. Some physical properties of the methanol-water mixture such as r...

متن کامل

Investigation of Monte Carlo, Molecular Dynamic and Langevin dynamic simulation methods for Albumin- Methanol system and Albumin-Water system

Serum Albumin is the most aboundant protein in blood plasma. Its two major roles aremaintaining osmotic pressure and depositing and transporting compounds. In this paper,Albumin-methanol solution simulation is carried out by three techniques including MonteCarlo (MC), Molecular Dynamic (MD) and Langevin Dynamic (LD) simulations. Byinvestigating energy changes by time and temperature (between 27...

متن کامل

Measurement of Methanol Contents in Most Commonly Used Herbal Distillates in Mashhad

Background: Herbal distillates had been used for many centuries as herbal medicine in Traditional Persian medicine. Recently, some studies claimed the presence of methanol in different types of herbal distillates which can cause different complications or even death as methanol is highly toxic. The main purpose of this study was to determine methanol content in the commonly-used industrial herb...

متن کامل

Hydraulic Parameters Sensitivity Analysis of Porous Media at Inverse Solution of Bromide Transport

Simulation of water and salt transfer in soil is very effective in managing optimal water and fertilizer use in the field. In this study, the HYDRUS-1D model was used to simulate the transfer of water and bromide in a laboratory column of soil with clay loam texture. Soil hydraulic parameters (including air entry point) α, (saturated hydraulic conductivity) ks, (residual moisture content) θr (s...

متن کامل

A molecular dynamics simulation of water transport through C and SiC nanotubes: Application for desalination

In this work the conduction of ion-water solution through two discrete bundles of armchair carbon and silicon carbide nanotubes, as useful membranes for water desalination, is studied. In order that studies on different types of nanotubes be comparable, the chiral vectors of C and Si-C nanotubes are selected as (7,7) and (5,5), respectively, so that    a similar volume of fluid is investigated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanical engineering

دوره 126 2  شماره 

صفحات  -

تاریخ انتشار 2004